//This program is intended to demonstrate simple serial programming where a vectors element gets modified serially.
//
#include <iostream>
#include <vector>
#include <cmath>
#include <chrono>
using std::cout;
using std::endl;
using std::vector;
void increase_magnitude(float *starting_address,unsigned int size_vec, float mag_multiplyer)
{
//the variable *starting_address is a pointer which will point to (or contain address of), the first element of the array.
for (int i=0;i<size_vec;i++) //2 instructions per loop for updating i, and checking i<size
{
//let us multiply the whole vector by 2
//since we have address of first element of vector, we can take its value by use of *
*starting_address=*starting_address * mag_multiplyer; //4 instructions
//now we shall increase its address by 1.
starting_address+=1; //2 instructions (add sum, and update sum)
}
//in total loop shall have 8 instructions per loop, so time taken shall be (size/clockspeed)*instructions per loop
//in this way at the same memory location we will have modified the vector.
}
double magnitude_finder(float *starting_address_vec,unsigned int size)
{
//This function will return the magnitude of the vector.
double sum=0.0;
for (int i=0;i<size;i++) //2 instructions per loop for updating i, and checking i<size
{
/* sum+=pow((*starting_address_vec),2); //power function is slow (10 times)*/
sum+=(*starting_address_vec)*(*starting_address_vec); //5 instructions
starting_address_vec+=1; //2 instructions
}
//9 instructions per loop
return pow(sum,0.5);
}
int main(int argc, char *argv[])
{
auto time_0 = std::chrono::high_resolution_clock::now();
unsigned int N=1<<31; //the number implies 31 zeroes in front of 1. So it is 2^31.
auto time_1 = std::chrono::high_resolution_clock::now();
vector<float> vec(N); //whenever we declare an vector, it has undefined size(if we don't provide the size). Unless we declare it with some size.
/* float *vec=new float[N]; //dynamics_array allocation does not take any time comparable to stack memory */
//let us fill the vector with N natural numbers(1,2,.......N).
auto time_2 = std::chrono::high_resolution_clock::now();
auto elapsed_time_1 = std::chrono::duration_cast<std::chrono::microseconds>(time_2 - time_1).count() / 1e6;
auto elapsed_time_storing_N = std::chrono::duration_cast<std::chrono::microseconds>(time_1 - time_1).count() / 1e6;
for (int i=0;i<N;i++)
{
vec[i]=i;
}
auto time_3 = std::chrono::high_resolution_clock::now();
auto elapsed_time_assigning_values = std::chrono::duration_cast<std::chrono::microseconds>(time_3 - time_2).count() / 1e6;
/* cout<<vec[0]<<vec[1]<<vec[2]<<vec[3]<<endl; */
//let us define a pointer to integer vector
float *ptr_to_vec=&vec[0]; //giving address of first element. Or we can just write:
//we shall modify the vector by multiply it with some real number.
//Real numbers are stored in float data types(require 4byte per real number) and double data types(8bytes).
float multiplier=4.0;
//Let us find the magnitude before changing the vector,
double mag_before=magnitude_finder(ptr_to_vec,N);
auto time_4 = std::chrono::high_resolution_clock::now();
auto elapsed_time_mag1 = std::chrono::duration_cast<std::chrono::microseconds>(time_4 - time_3).count() / 1e6;
increase_magnitude(ptr_to_vec,N,multiplier);
auto time_5 = std::chrono::high_resolution_clock::now();
auto elapsed_time_modify_mag = std::chrono::duration_cast<std::chrono::microseconds>(time_5 - time_4).count() / 1e6;
double mag_after=magnitude_finder(ptr_to_vec,N);
auto time_6 = std::chrono::high_resolution_clock::now();
auto elapsed_time_mag2 = std::chrono::duration_cast<std::chrono::microseconds>(time_6 - time_5).count() / 1e6;
double ratio_of_magnitudes=mag_after/mag_before;
printf("Value of magnitude before multiplying the vector is %0.f \n",mag_before);
printf("Value of magnitude after multiplying the vector is %0.f \n",mag_after);
cout<<"the final vector has magnitude "<<ratio_of_magnitudes<<" times the earlier one"<<endl<<"which should be equal to the multiplier (which is: "<<multiplier<<")"<<endl;
cout<<"the time to assign N: "<<elapsed_time_storing_N<<" seconds"<<endl;
cout<<"the time to declare vector of N with doubles data type : "<<elapsed_time_1<<" seconds"<<endl;
cout<<"the time to assign vector: "<<elapsed_time_assigning_values<<" seconds"<<endl;
cout<<"the time to find magnitude of vector_in: "<<elapsed_time_mag1<<" seconds"<<endl;
cout<<"the time to modify the vector_in: "<<elapsed_time_modify_mag<<" seconds"<<endl;
cout<<"the time to calculate magnitude of modified vector_in: "<<elapsed_time_mag2<<" seconds"<<endl;
cout<<" The total time shall be :"<<elapsed_time_1+elapsed_time_assigning_values+elapsed_time_mag1+elapsed_time_modify_mag+elapsed_time_mag2<<" seconds"<<endl;
return 0;
}
Output
```
Value of magnitude before multiplying the vector is 57455839005566
Value of magnitude after multiplying the vector is 229823356022263
the final vector has magnitude 4 times the earlier one
which should be equal to the multiplier (which is: 4)
the time to assign N: 0 seconds
the time to declare vector of N with doubles data type : 8.45935 seconds
the time to assign vector: 7.44733 seconds
the time to find magnitude of vector_in: 5.80138 seconds
the time to modify the vector_in: 4.68935 seconds
the time to calculate magnitude of modified vector_in: 5.81678 seconds
The total time shall be :32.2142 seconds
real 0m32.528s
user 0m28.995s
sys 0m3.434s
```
Remarks: We can try allocating the N sized vector using new keyword. (dynamic memoery allocation)