The N point function is simply
\[
\frac{\bra{\Omega}T[\phi(x_{1})\phi(x_{2})\phi(x_{3})...\phi(x_{n})]\ket{\Omega}}{\bra{\Omega}\ket{\Omega}}
\]
which can be written in free fields and free vacuum by the following relations.
\[
\begin{align*}
\phi_{0}(\vec{x},t)=e^{iH_{0}t}\phi(\vec{x},0)e^{-iH_{0}t}\\
\phi_(\vec{x},t)=e^{iHt}\phi(\vec{x},0)e^{-iHt}\\
\text{above equation implies that}\\
\phi_(\vec{x},t) &=e^{iHt}e^{-iH_{0}t}\phi_{0}(\vec{x},t)e^{iH_{0}t}e^{-iHt}\\
&=U^{\dagger}(t,0)\phi_{0}(\vec{x},t)U(t,0)\\
\text{where ,}\\
U(t,0)=e^{iH_{0}t}e^{-iHt}\\
\end{align*}
\]
We start looking for some differential equation for U(t,0), and we get :
\[
\begin{align*}
\frac{dU}{dt} &=iH_{0}U-iUH \\
&=ie^{iH_{0}t}(H_{0}-H)e^{-iHt}\\
&=-ie^{iH_{0}t}(H_{int})e^{-iHt}\\
&=-i(e^{iH_{0}t}(H_{int})e^{-iH_{0}t})e^{iH_{0}t}e^{-iHt}\\
&=-iH_{I}(t)U(t,0)\\
\\
\boxed{\frac{dU}{dt}=-iH_{I}(t)U(t,0)} \\
\\
\end{align*}
\]