N point correlator in interacting theory

The N point function is simply

Ω|T[ϕ(x1)ϕ(x2)ϕ(x3)...ϕ(xn)]|ΩΩ||Ω

which can be written in free fields and free vacuum by the following relations.

ϕ0(x,t)=eiH0tϕ(x,0)eiH0tϕ(x,t)=eiHtϕ(x,0)eiHtabove equation implies thatϕ(x,t)=eiHteiH0tϕ0(x,t)eiH0teiHt=U(t,0)ϕ0(x,t)U(t,0)where ,U(t,0)=eiH0teiHt

We start looking for some differential equation for U(t,0), and we get :

dUdt=iH0UiUH=ieiH0t(H0H)eiHt=ieiH0t(Hint)eiHt=i(eiH0t(Hint)eiH0t)eiH0teiHt=iHI(t)U(t,0)dUdt=iHI(t)U(t,0)